
QuickSort
Algorithm

Dewi SintiariDewi SintiariDewi Sintiari

March 14th, 2022

nld.sintiari@gmail.comnld.sintiari@gmail.comnld.sintiari@gmail.com

Objectives
To understand the principle of Quicksort algorithm

Able to apply Quicksort algorithm for sorting data

Able to analyze the time-complexity of Quicksort algorithm

Preliminary
Quicksort is developed by British computer scientist Tony Hoare in 1959 and published in 1961

It's still a commonly used algorithm for sorting

When implemented well, it can be quite fast

https://www.wikiwand.com/en/Tony_Hoare

How to sort the girls "quickly" ?

How to sort the girls "quickly" ?

X
taller than Xlower than X

How to sort the girls "quickly" ?

X

How to sort the girls "quickly" ?

X
taller than Xlower than X

How to sort the girls "quickly" ?

X

How to sort the girls "quickly" ?

X

How to sort the girls "quickly" ?

X

How to sort the girls "quickly" ?

All elements that are less than X appear before X
All elements that are greater than X appear after X

The idea of QuickSort
We say that an element X is sorted if it is in the correct position

Quicksort is a divide-and-conquer algorithm
At each step, we split the problem into two subproblems, and solve each subproblem
For every problem, select a pivot X
Move all elements "smaller" than X before X
Move all elements "bigger" than X after X

Input: a list A of unsorted elements
Output: sorted list of A

10 16 8 12 15 6 3 9 5A =

The idea of QuickSort

https://www.wikiwand.com/en/Divide-and-conquer_algorithm
https://www.wikiwand.com/en/Divide-and-conquer_algorithm

10 16 8 12 15 6 3 9 5 ∞

low high

1 2 3 4 5 6 7 8 90

Example

10 16 8 12 15 6 3 9 5 ∞

low high

pivot = 10

1 2 3 4 5 6 7 8 90

Example

pivot is chosen as the first element of the array

QuickSort Partitioning Procedure

10 16 8 12 15 6 3 9 5 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

i is the index that will look for element > pivot
j is the index that will look for element < pivot
such two elements will be exchanged

QuickSort Partitioning Procedure

10 16 8 12 15 6 3 9 5 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 12 15 6 3 9 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 12 15 6 3 9 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 12 15 6 3 9 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 15 6 3 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 15 6 3 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 15 6 3 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 3 6 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 3 6 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

i j

QuickSort Partitioning Procedure

10 5 8 9 3 6 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

j i

we STOP (do not interchange i and j), now i is on the right of j

QuickSort Partitioning Procedure

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

j i

we STOP (do not interchange i and j), now i is on the right of j
interchange A[j] and pivot

QuickSort Partitioning Procedure

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

we STOP (do not interchange i and j), now i is on the right of j
interchange A[j] and pivot
Now pivot is in the correct position

all elements before pivot are < 10
all elements after pivot are > 10

< 10 > 10

QuickSort Partitioning Procedure

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

we STOP (do not interchange i and j), now i is on the right of j
interchange A[j] and pivot
Now pivot is in the correct position

all elements before pivot are < 10
all elements after pivot are > 10

not sorted not sorted

not sorted not sorted

QuickSort Partitioning Procedure

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

sorted

This is called "partitioning position"

not sorted not sorted

QuickSort Partitioning Procedure

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

sorted

Pseudocode
Finding pivot's position

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

QuickSort Algorithm

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

l hj

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

QuickSort(low,high):

 if (low<high):

 j = Partition(low,high)

 QuickSort(low,j)

 QuickSort(j+1,high)

Pseudocode
Finding pivot's position

QuickSort Algorithm

6 5 8 9 3 10 15 12 16 ∞
1 2 3 4 5 6 7 8 90

low high

pivot = 10

l hj

QuickSort(low,high):

 if (low<high):

 j = Partition(low,high)

 QuickSort(low,j)

 QuickSort(j+1,high)

why include j (it is sorted already) ?
where is the 'infinity' for the left partition ?

Question:

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

Pseudocode
Finding pivot's position

Time-complexity Analysis (best case)

1,15

1,7 9,15

9,12 13,151,3 4,7

3,31,1 1,34,4 12,129,9 15,1513,13

The divide-and-conquer procedure takes time O(log n)
The Partition procedure takes time O(n)

Complexity:

QuickSort(l,h):

 if (l<h):

 j = Partition(l,h)

 QuickSort(l,j)

 QuickSort(j+1,h)

1 15
15 elements to sort

If the pivot is always in the middle

Best case time complexity = O(n log n)

Best case is not always possible !

In each step, we must select the median as a pivot.
But this is not possible, eventhough it may happen randomly.

Time-complexity Analysis (worst case)

1 2 3 4 5 6 7 8 9 ∞

ji

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

Time-complexity Analysis (worst case)

1 2 3 4 5 6 7 8 9 ∞

ji

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

low high

Time-complexity Analysis (worst case)

1 2 3 4 5 6 7 8 9 ∞

j i

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

low high

Time-complexity Analysis (worst case)

1 2 3 4 5 6 7 8 9 ∞

i

Partition(low,high):

 pivot = A[low]

 i=low

 j=high

 while (i<j)

 while (A[i]<=pivot)

 i+=1

 while (A[j]>pivot)

 j-=1

 if (i<j)

 swap(A[i],A[j])

 swap(A[low],A[j])

 return j

low high

j

1,9

2,9

3,9

...

8,9

9,9

Worst case time complexity = O(n) x O(n) = O(n)2

the list is already sorted,
or it is sorted in the reverse order

This could happen when:

How to avoid the worst case
so far, we choose the first element of the list
this increases the chance of getting the worst-case complexity

Alternatives
choose the pivot randomly
choose the middle-most element of the list as the pivot

3 5 2 1 4

3 5 2 41

3 5 42

5 43

54

5

1

12

2 13

2 13 4

What we learned today

The principle of Quicksort algorithm

Best-case complexity = O(n log n)

Worst-case complexity = O(n)

A way of minimizing the probability of getting worst-case complexity is by
changing the method of choosing the pivot

the first/last element
the middle-most element
randomly

Some ways of choosing pivot:

2

Quiz
Suppose we are sorting an array of eight integers using quicksort, and we
have just finished the first partitioning with the array looking like this:

2 5 1 7 9 12 11 10

Which statement is correct? Explain your argument!

A. The pivot could be either 7 or 9
B. The pivot could be 7, but it is not 9
C. The pivot is not 7, but it could be 9
D. Neither 7 nor 9 is the pivot

Quiz
Suppose we are sorting an array of eight integers using quicksort, and we
have just finished the first partitioning with the array looking like this:

2 5 1 7 9 12 11 10

Which statement is correct? Explain your argument!

A. The pivot could be either 7 or 9
B. The pivot could be 7, but it is not 9
C. The pivot is not 7, but it could be 9
D. Neither 7 nor 9 is the pivot

7 and 9 both are at their correct positions (as in a sorted array).
Also, all elements on the left of 7 and 9 are smaller than 7 and 9
respectively and on right are greater than 7 and 9 respectively.

Explanation
Answer: A

	Shortened QuickSort Algorithm
	Shortened QuickSort Algorithm
	Shortened QuickSort Algorithm

